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Interaction with the environment

 reward  
      +  

       new environment

action

Setup from Lenz et. al. 2014

Scalar reward



Rollout

Setup from Lenz et. al. 2014
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Policy

⇡(s, a) = 0.9



From previous tutorial
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Bellman’s optimality condition

Bellman’s self-consistency equation

      An optimal policy     exists such that:⇡⇤
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(s) � V ⇡(s) 8s 2 S,⇡



Solving MDP

To solve an MDP (or RL problem)  
is to find an optimal policy



Dynamic Programming Solution 

Initialize       randomlyV 0

do

until       kV t+1 � V tk1 > ✏

V t+1 = TV t

return V t+1
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Dynamic Programming Solution 

Initialize       randomlyV 0

do

until       kV t+1 � V tk1 > ✏

V t+1 = TV t

return V t+1

Problem?
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Learning from rollouts

Step 1: gather experience using a behaviour policy 

Step2: update value functions of an estimation policy 



On-Policy and Off-Policy

On policy methods

behaviour and estimation policy are same

Off policy methods

behaviour and estimation policy can be different

Advantage?



Behaviour Policy

• Encourage exploration of search space

• Epsilon-greedy policy
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Temporal Difference Method

Q⇡(s, a) = E⇡

2

4
X

t�0

�trt+1|s1 = s, a1 = a

3

5

= E⇡

2

4r1 + �

0

@
X

t�0

�trt+2

1

A |s1 = s, a1 = a

3

5

= E⇡ [r1 + �Q⇡(s2, a2) |s1 = s, a1 = a]

Q⇡(s, a) = (1� ↵)Q⇡(s, a) + ↵(r1 + �Q⇡(s2, a2))

combination of monte carlo and dynamic programming



SARSA

Converges w.p.1 to an optimal policy as long as all 
state-action pairs are visited infinitely many times and  
epsilon eventually decays to 0 i.e. policy becomes greedy.

On or off?



Q-Learning

On or off?For proof of convergence see:  
http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Q⇤
(s, a) =

X

s0

P a
s,s0{Ra

s,s0 + �max

a0
Q⇤

(s0, a0)}

Resemblance to Bellman optimality condition

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf


Summary

• SARSA and Q-Learning

• On vs Off policy. Epsilon greedy policy.



What we learned

Solving Reinforcement Learning

Dynamic Programming Soln.

Bellman Backup Operator
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Temporal Difference Learning



Another Approach

• So far policy is implicitly defined using value functions

• Can’t we directly work with policies



Policy Gradient Methods

• Parameterized policy ⇡✓(s, a)

• Gradient descent. Smoothly evolving policy.

• Obtaining gradient estimator?

• Optimization                    where max

✓
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Finite Difference Method

@J(✓)

@✓i
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• Easy to implement and works for all policies.

Problem?



Likelihood Ratio Trick
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Reinforce (Multi Step)

r✓J(✓) = E⇡✓(s,a)[r✓ log ⇡✓(s, a)Q
⇡✓(s,a)

(s, a)]

Policy gradient theorem:

initialize ✓

for each episode hs1, a1, r1, s2, a2, r2, s3, · · · an, rn, sni⇠ ⇡✓(s1, a1)

for t 2 {1, n}

✓  ✓ + ↵r✓ log ⇡✓(st, at)vt

vt ⇠ Q⇡
✓ (st, at)

return ✓
content from David Silver



Summary

• SARSA and Q-Learning

• Policy Gradient Methods

• On vs Off policy. Epsilon greedy policy.



What we learned

Solving Reinforcement Learning

Dynamic Programming Soln.

Bellman Backup Operator

Iterative Solution

SARSA Q-Learning

Temporal Difference Learning

Policy Gradient Methods

Finite difference method Reinforce



What we did not cover

• Generalized policy iteration

• Simple monte carlo solution

• TD(   ) algorithm�

• Convergence of Q-learning, SARSA

• Actor-critic method

· · ·



Application



Playing Atari game with Deep RL

State is given by raw images.

Learn a good policy for a given game.



Playing Atari game with Deep RL

Q(s, a, ✓) ⇡ Q⇤(s, a)
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Playing Atari game with Deep RL
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nothing deep about their RL



Playing Atari game with Deep RL



Playing Atari game with Deep RL

break correlation between consecutive datapoints
why replay memory?



Playing Atari game with Deep RL



Why Deep RL is hard
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• Recursive equation blows as difference between  
        is smalls, s0

• Too many iterations required for convergence.  
10 million frames for Atari game.

• It may take too long to see a high reward action.



Learning to Search

• It may take too long to see a high reward.

• Ease the learning using a reference policy

• Exploiting a reference policy to search space better

s1 si sn

⇡(s, a) ⇡ref (s, a)



Summary

• SARSA and Q-Learning

• Policy Gradient Methods

• Playing Atari game using deep reinforcement learning

• On vs Off policy. Epsilon greedy policy.

• Why deep RL is hard. Learning to search.


